Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Tachycardia increases oxidation of the plasma-borne long chain fatty acids in the heart. The aim of the present study was to examine effect of tachycardia on: 1) the total level of free fatty acids, diacylglycerols, triacylglycerols and phospholipids in both heart ventricles; 2) (14)C-palmitate incorporation in the lipid fractions; 3) expression of fatty acid and glucose transporters in the ventricles. Tachycardia was induced in anesthetized rats by electrical atrial pacing at the rate of 600/min. Samples of the left (LV) and right (RV) ventricle were taken after 30 and 60 min pacing. The level free fatty acids, diacylglycerols, triacylglycerols and phospholipids was determined by means of gas-liquid chromatography and (14)C-palmitate incorporation by liquid scintillation counting, respectively. Expression of fatty acid- and glucose-transporters was determined using Western blot technique. In LV, 30min pacing increased the content of diacylglycerols whereas the content of other lipids remained stable. After 60 min of pacing the levels of the examined lipid fractions did not differ from the respective control values. In RV, the content of diacylglycerols and triacylglycerols was reduced both after 30 and 60 min pacing. Tachycardia also affected incorporation of (14)C-palmitate in lipid fractions of goth ventricles. 30 min pacing up-regulated plasmalemmal expression of FAT/CD36 (fatty acid translocase) in both ventricles and reduced its microsomal expression in LV. After 60 min pacing they did not differ from the respective control values. Plasmalemmal expression of FATP-1 (fatty acid transport protein 1) increased and its microsomal expression decreased in RV after 30 min pacing. After 60 min pacing the plasmalemmal FATP-1 expression remained elevated whereas the microsomal expression did not differ from the control value. Pacing did not affect or expression of FABPpm (plasma membrane associated fatty acid binding protein) in either plasma membranes and microsomal compartments. Thirty min pacing increased plasmalemmal and reduced microsomal expression of GLUT-4 (glucotransporter 4) in both ventricles. It increased plasmalemmal expression of GLUT-1 (glucotransporter 1) in RV. It returned to normal after 60 min pacing. It is concluded that tachycardia induces numerous changes in metabolism of myocardial lipids as well as expression of fatty acid and glucose transporters in both heart ventricles.

Citation

B Wojcik, E Harasim, P Zabielski, A Chabowski, J Gorski. Effect of tachycardia on lipid metabolism and expression of fatty acid transporters in heart ventricles of the rat. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2015 Oct;66(5):691-9

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 26579575

View Full Text