Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Low levels of high-density lipoprotein cholesterol (HDL-C) and high triglyceride levels contribute to the excess rate of cardiovascular events seen in subjects with type 2 diabetes. Fenofibrate treatment partially reverses dyslipidemia in these subjects. However, a paradoxical marked reduction in HDL-C and HDL's major protein, apolipoprotein A-I, is a complication of fenofibrate in combination with rosiglitazone, an insulin-sensitizing agent. Risk factors for this condition, termed hypoalphalipoproteinemia, have yet to be identified. Using a case-control study design with subjects enrolled in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, we tested the hypothesis that alterations in HDL's protein cargo predispose diabetic subjects to fenofibrate/rosiglitazone-induced hypoalphalipoproteinemia. HDL was isolated from blood obtained from controls (no decreases or increase in HDL-C while receiving fenofibrate/rosiglitazone therapy) and cases (developed hypoalphalipoproteinemia after fenofibrate/rosiglitazone treatment) participating in the ACCORD study before they began fenofibrate/rosiglitazone treatment. HDL proteins were quantified by targeted parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) with isotope dilution. This approach demonstrated marked increases in the relative concentrations of paraoxonase/arylesterase 1 (PON1), apolipoprotein C-II (APOC2), apolipoprotein C-I, and apolipoprotein H in the HDL of subjects who developed hypoalphalipoproteinemia. The case and control subjects did not differ significantly in baseline HDL-C levels or other traditional lipid risk factors. We used orthogonal biochemical techniques to confirm increased levels of PON1 and APOC2. Our observations suggest that an imbalance in HDL proteins predisposes diabetic subjects to develop hypoalphalipoproteinemia on fenofibrate/rosiglitazone therapy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

Citation

Graziella E Ronsein, Gissette Reyes-Soffer, Yi He, Michael Oda, Henry Ginsberg, Jay W Heinecke. Targeted Proteomics Identifies Paraoxonase/Arylesterase 1 (PON1) and Apolipoprotein Cs as Potential Risk Factors for Hypoalphalipoproteinemia in Diabetic Subjects Treated with Fenofibrate and Rosiglitazone. Molecular & cellular proteomics : MCP. 2016 Mar;15(3):1083-93

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 26667175

View Full Text