Correlation Engine 2.0
Clear Search sequence regions


  • cell (1)
  • diffuses (1)
  • growth (1)
  • layer (1)
  • local (2)
  • metal (3)
  • oxygen (1)
  • sapphire (1)
  • Sizes of these terms reflect their relevance to your search.

    BiFeO3 based MIM structures with Ti-implanted Pt bottom electrodes and Au top electrodes have been fabricated on Sapphire substrates. The resulting metal-insulator-metal (MIM) structures show bipolar resistive switching without an electroforming process. It is evidenced that during the BiFeO3 thin film growth Ti diffuses into the BiFeO3 layer. The diffused Ti effectively traps and releases oxygen vacancies and consequently stabilizes the resistive switching in BiFeO3 MIM structures. Therefore, using Ti implantation of the bottom electrode, the retention performance can be greatly improved with increasing Ti fluence. For the used raster-scanned Ti implantation the lateral Ti distribution is not homogeneous enough and endurance slightly degrades with Ti fluence. The local resistive switching investigated by current sensing atomic force microscopy suggests the capability of down-scaling the resistive switching cell to one BiFeO3 grain size by local Ti implantation of the bottom electrode.

    Citation

    Tiangui You, Xin Ou, Gang Niu, Florian Bärwolf, Guodong Li, Nan Du, Danilo Bürger, Ilona Skorupa, Qi Jia, Wenjie Yu, Xi Wang, Oliver G Schmidt, Heidemarie Schmidt. Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes. Scientific reports. 2015;5:18623


    PMID: 26692104

    View Full Text