Correlation Engine 2.0
Clear Search sequence regions


Chronic heart failure (CHF) increases sympathoexcitation through angiotensin II (ANG II) receptors (AT1R) in the paraventricular nucleus (PVN). Recent publications indicate both γ-aminobutyric acid B-type receptor 1 (GABBR1) and microRNA-7b (miR-7b) are expressed in the PVN. We hypothesized that ANG II regulates sympathoexcitation through homeobox D10 (HoxD10), which regulates miR-7b in other tissues. Ligation of the left anterior descendent coronary artery in rats caused CHF and sympathoexcitation. PVN expression of AT1R, HoxD10, and miR-7b was increased, whereas GABBR1 was lower in CHF. Infusion of miR-7b in the PVN caused sympathoexcitation in control animals and enhanced the changes in CHF. Antisense miR-7b infused in PVN normalized GABBR1 expression while attenuating CHF symptoms, including sympathoexcitation. A luciferase reporter assay detected miR-7b binding to the 3' untranslated region of GABBR1 that was absent after targeted mutagenesis. ANG II induced HoxD10 and miR-7b in NG108 cells, effects blocked by AT1R blocker losartan and by HoxD10 silencing. miR-7b transfection into NG108 cells decreased GABBR1 expression, which was inhibited by miR-7b antisense. In vivo PVN knockdown of AT1R attenuated the symptoms of CHF, whereas HoxD10 overexpression exaggerated them. Finally, in vivo PVN ANG II infusion caused dose-dependent sympathoexcitation that was abrogated by miR-7b antisense and exaggerated by GABBR1 silencing. There is an ANG II/AT1R/HoxD10/miR-7b/GABBR1 pathway in the PVN that contributes to sympathoexcitation and deterioration of cardiac function in CHF. © 2015 American Heart Association, Inc.

Citation

Renjun Wang, Qian Huang, Rui Zhou, Zengxiang Dong, Yunfeng Qi, Hua Li, Xiaowei Wei, Hui Wu, Huiping Wang, Christopher S Wilcox, Michael Hultström, Xiaofu Zhou, En Yin Lai. Sympathoexcitation in Rats With Chronic Heart Failure Depends on Homeobox D10 and MicroRNA-7b Inhibiting GABBR1 Translation in Paraventricular Nucleus. Circulation. Heart failure. 2016 Jan;9(1):e002261

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 26699387

View Full Text