Correlation Engine 2.0
Clear Search sequence regions


  • antibodies (1)
  • antigen (1)
  • blood (1)
  • bone marrow (5)
  • cells (5)
  • feeder layer (1)
  • rat (2)
  • Sca1 (1)
  • spinal cord (4)
  • ssea 1 (3)
  • stem cells (5)
  • tail (2)
  • vein (2)
  • Sizes of these terms reflect their relevance to your search.

    Bone marrow (BM) is one of the major hematopoietic organs in postnatal life that consists of a heterogeneous population of stem cells which have been previously described. Recently, a rare population of stem cells that are called very small embryonic-like (VSEL) stem cells has been found in the BM. These cells express several developmental markers of pluri- potent stem cells and can be mobilized into peripheral blood (PB) in response to tissue injury. In this study we have attempted to investigate the ability of these cells to migrate toward an injured spinal cord after transplantation through the tail vein in a rat model. In this experimental study, VSELs were isolated from total BM cells using a fluorescent activated cell sorting (FACS) system and sca1 and stage specific embryonic antigen (SSEA-1) antibodies. After isolation, VSELs were cultured for 7 days on C2C12 as the feeder layer. Then, VSELs were labeled with 1,1´-dioctadecyl-3,3,3´,3´- tetramethylindocarbocyanine perchlorate (DiI) and transplanted into the rat spinal cord injury (SCI) model via the tail vein. Finally, we sought to determine the presence of VSELs in the lesion site. We isolated a high number of VSELs from the BM. After cultivation, the VSELs colonies were positive for SSEA-1, Oct4 and Sca1. At one month after transplantation, real-time polymerase chain reaction analysis confirmed a significantly increased expres- sion level of Oct4 and SSEA-1 positive cells at the injury site. VSELs have the capability to migrate and localize in an injured spinal cord after transplantation.

    Citation

    Zoleikha Golipoor, Fereshteh Mehraein, Fariba Zafari, Akram Alizadeh, Shima Ababzadeh, Maryam Baazm. Migration of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells toward An Injured Spinal Cord. Cell journal. 2016;17(4):639-47


    PMID: 26862523

    View Full Text