Correlation Engine 2.0
Clear Search sequence regions


  • binds (1)
  • cells (1)
  • dead box rna helicases (2)
  • dna (3)
  • FANCM (1)
  • Fanconi anemia (1)
  • gene (1)
  • homeostasis (1)
  • humans (1)
  • Mph1 (8)
  • Mte1 (9)
  • over (1)
  • protein transport (1)
  • vitro (1)
  • Sizes of these terms reflect their relevance to your search.

    Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance. © 2016 Silva et al.; Published by Cold Spring Harbor Laboratory Press.

    Citation

    Sonia Silva, Veronika Altmannova, Sarah Luke-Glaser, Peter Henriksen, Irene Gallina, Xuejiao Yang, Chunaram Choudhary, Brian Luke, Lumir Krejci, Michael Lisby. Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance. Genes & development. 2016 Mar 15;30(6):700-17

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 26966248

    View Full Text