Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The highly conserved cochaperone DnaJ/Hsp40 family proteins are known to interact with molecular chaperone Hsp70, and can regulate many cellular processes including protein folding, translocation, and degradation. In studies of Caenorhabditis elegans locomotion mutants, we identified a gain-of-function (gf) mutation in dnj-17 closely linked to the widely used e156 null allele of C. elegans GAD (glutamic acid decarboxylase) unc-25 dnj-17 encodes a DnaJ protein orthologous to human DNAJA5. In C. elegans DNJ-17 is a cytosolic protein and is broadly expressed in many tissues. dnj-17(gf) causes a single amino acid substitution in a conserved domain, and behaves as a hypermorphic mutation. The effect of this dnj-17(gf) is most prominent in mutants lacking GABA synaptic transmission. In a seizure model caused by a mutation in the ionotropic acetylcholine receptor acr-2(gf), dnj-17(gf) exacerbates the convulsion phenotype in conjunction with absence of GABA. Null mutants of dnj-17 show mild resistance to aldicarb, while dnj-17(gf) is hypersensitive. These results highlight the importance of DnaJ proteins in regulation of C. elegans locomotor circuit, and provide insights into the in vivo roles of DnaJ proteins in humans. Copyright © 2016 Takayanagi-Kiya and Jin.

Citation

Seika Takayanagi-Kiya, Yishi Jin. Altered Function of the DnaJ Family Cochaperone DNJ-17 Modulates Locomotor Circuit Activity in a Caenorhabditis elegans Seizure Model. G3 (Bethesda, Md.). 2016 Jul 07;6(7):2165-71

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 27185401

View Full Text