Correlation Engine 2.0
Clear Search sequence regions


  • al 13 (1)
  • databases protein (1)
  • ECL (5)
  • humans (1)
  • Kojak (2)
  • nat (3)
  • peptides (10)
  • period (1)
  • reagents (2)
  • Sizes of these terms reflect their relevance to your search.

    Chemical cross-linking combined with mass spectrometry (CX-MS) is a high-throughput approach to studying protein-protein interactions. The number of peptide-peptide combinations grows quadratically with respect to the number of proteins, resulting in a high computational complexity. Widely used methods including xQuest (Rinner et al., Nat Methods 5(4):315-8, 2008; Walzthoeni et al., Nat Methods 9(9):901-3, 2012), pLink (Yang et al., Nat Methods 9(9):904-6, 2012), ProteinProspector (Chu et al., Mol Cell Proteomics 9:25-31, 2010; Trnka et al., 13(2):420-34, 2014) and Kojak (Hoopmann et al., J Proteome Res 14(5):2190-198, 2015) avoid searching all peptide-peptide combinations by pre-selecting peptides with heuristic approaches. However, pre-selection procedures may cause missing findings. The most intuitive approach is searching all possible candidates. A tool that can exhaustively search a whole database without any heuristic pre-selection procedure is therefore desirable. We have developed a cross-linked peptides identification tool named ECL. It can exhaustively search a whole database in a reasonable period of time without any heuristic pre-selection procedure. Tests showed that searching a database containing 5200 proteins took 7 h. ECL identified more non-redundant cross-linked peptides than xQuest, pLink, and ProteinProspector. Experiments showed that about 30 % of these additional identified peptides were not pre-selected by Kojak. We used protein crystal structures from the protein data bank to check the intra-protein cross-linked peptides. Most of the distances between cross-linking sites were smaller than 30 Å. To the best of our knowledge, ECL is the first tool that can exhaustively search all candidates in cross-linked peptides identification. The experiments showed that ECL could identify more peptides than xQuest, pLink, and ProteinProspector. A further analysis indicated that some of the additional identified results were thanks to the exhaustive search.

    Citation

    Fengchao Yu, Ning Li, Weichuan Yu. ECL: an exhaustive search tool for the identification of cross-linked peptides using whole database. BMC bioinformatics. 2016 May 20;17(1):217

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 27206479

    View Full Text