Correlation Engine 2.0
Clear Search sequence regions


  • acid (1)
  • aldehyde (2)
  • black (1)
  • calcium signals (1)
  • carbon (4)
  • cell (4)
  • human (1)
  • lemon grass (1)
  • methyl (2)
  • odor (3)
  • receptors (2)
  • TAS2R10 (2)
  • TAS2R43 (6)
  • TAS2R46 (3)
  • TAS2R7 (1)
  • Sizes of these terms reflect their relevance to your search.

    Sensory studies showed the volatile fraction of lemon grass and its main constituent, the odor-active citronellal, to significantly decrease the perceived bitterness of a black tea infusion as well as caffeine solutions. Seven citronellal-related derivatives were synthesized and shown to inhibit the perceived bitterness of caffeine in a structure-dependent manner. The aldehyde function at carbon 1, the (R)-configuration of the methyl-branched carbon 3, and a hydrophobic carbon chain were found to favor the bitter inhibitory activity of citronellal; for example, even low concentrations of 25 ppm were observed to reduce bitterness perception of caffeine solution (6 mmol/L) by 32%, whereas (R)-citronellic acid (100 pm) showed a reduction of only 21% and (R)-citronellol (100 pm) was completely inactive. Cell-based functional experiments, conducted with the human bitter taste receptors TAS2R7, TAS2R10, TAS2R14, TAS2R43, and TAS2R46 reported to be sensitive to caffeine, revealed (R)-citronellal to completely block caffeine-induced calcium signals in TAS2R43-expressing cells, and, to a lesser extent, in TAS2R46-expressing cells. Stimulation of TAS2R43-expressing cells with structurally different bitter agonists identified (R)-citronellal as a general allosteric inhibitor of TAS2R43. Further structure/activity studies indicated 3-methyl-branched aliphatic aldehydes with a carbon chain of ≥4 C atoms as best TAS2R43 antagonists. Whereas odor-taste interactions have been mainly interpreted in the literature to be caused by a central neuronal integration of odors and tastes, rather than by peripheral events at the level of reception, the findings of this study open up a new dimension regarding the interaction of the two chemical senses.

    Citation

    Barbara Suess, Anne Brockhoff, Wolfgang Meyerhof, Thomas Hofmann. The Odorant (R)-Citronellal Attenuates Caffeine Bitterness by Inhibiting the Bitter Receptors TAS2R43 and TAS2R46. Journal of agricultural and food chemistry. 2016 Sep 1


    PMID: 27569025

    View Full Text