Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Senescence is the final stage of plant development. Although expression of most of the genes is suppressed during senescence, a set of genes referred as senescence-associated genes (SAGs) is induced. Arabidopsis thaliana SAG12 (AtSAG12) is one such gene that has been mostly studied for its strict association with senescence. AtSAG12 encodes a papain-like cysteine protease, expressed predominantly in senescence-associated vacuoles. Rice genome contains multiple AtSAG12 homologues (OsSAGs). OsSAG12-1, the closest structural homologue of AtSAG12, is a negative regulator of developmental and stress-induced cell death. Proteolytic activity has not been established for any SAG12 homologues in vitro. Here, we report that OsSAG12-2, the second structural homologue of AtSAG12 from rice, codes for a functional proteolytic enzyme. The recombinant OsSAG12-2 protein produced in Escherichia coli undergoes autolysis to generate a functional protease. The matured OsSAG12-2 protein shows 27 percent trypsin-equivalent proteolytic activity on azocasein substrate. Dark-induced senescence activates OsSAG12-2 expression. Down-regulation of OsSAG12-2 in the transgenic artificial miRNA lines results in enhanced salt- and UV-induced cell death, even though it does not affect cell viability in the stress-free condition. Our results show that OsSAG12-2 codes for a functional protease that negatively regulates stress-induced cell death in rice.

Citation

Subaran Singh, Anupriya Singh, Ashis Kumar Nandi. The rice OsSAG12-2 gene codes for a functional protease that negatively regulates stress-induced cell death. Journal of biosciences. 2016 Sep;41(3):445-53


PMID: 27581936

View Full Text