Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The membrane fusion of secretory granules with plasma membranes is crucial for the exocytosis of hormones and enzymes. Secretion disorders can cause various diseases such as diabetes or pancreatitis. Synaptosomal-associated protein 23 (SNAP23), a soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE) molecule, is essential for secretory granule fusion in several cell lines. However, the in vivo functions of SNAP23 in endocrine and exocrine tissues remain unclear. In this study, we show opposing roles for SNAP23 in secretion in pancreatic exocrine and endocrine cells. The loss of SNAP23 in the exocrine and endocrine pancreas resulted in decreased and increased fusion of granules to the plasma membrane after stimulation, respectively. Furthermore, we identified a low molecular weight compound, MF286, that binds specifically to SNAP23 and promotes insulin secretion in mice. Our results demonstrate opposing roles for SNAP23 in the secretion mechanisms of the endocrine and exocrine pancreas and reveal that the SNAP23-binding compound MF286 may be a promising drug for diabetes treatment. © 2016 Kunii et al.

Citation

Masataka Kunii, Mica Ohara-Imaizumi, Noriko Takahashi, Masaki Kobayashi, Ryosuke Kawakami, Yasumitsu Kondoh, Takeshi Shimizu, Siro Simizu, Bangzhong Lin, Kazuto Nunomura, Kyota Aoyagi, Mitsuyo Ohno, Masaki Ohmuraya, Takashi Sato, Shin-Ichiro Yoshimura, Ken Sato, Reiko Harada, Yoon-Jeong Kim, Hiroyuki Osada, Tomomi Nemoto, Haruo Kasai, Tadahiro Kitamura, Shinya Nagamatsu, Akihiro Harada. Opposing roles for SNAP23 in secretion in exocrine and endocrine pancreatic cells. The Journal of cell biology. 2016 Oct 10;215(1):121-138

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 27697926

View Full Text