Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Bacterial biofilms are multicellular aggregates encased in an extracellular matrix mainly composed of exopolysaccharides (EPSs), protein and nucleic acids, which determines the architecture of the biofilm. Erwinia amylovora Ea1189 forms a biofilm inside the xylem of its host, which results in vessel plugging and water transport impairment. The production of the EPSs amylovoran and levan is critical for the formation of a mature biofilm. In addition, cyclic dimeric GMP (c-di-GMP) has been reported to positively regulate amylovoran biosynthesis and biofilm formation in E. amylovora Ea1189. In this study, we demonstrate that cellulose is synthesized by E. amylovora Ea1189 and is a major modulator of the three-dimensional characteristics of biofilms formed by this bacterium, and also contributes to virulence during systemic host invasion. In addition, we demonstrate that the activation of cellulose biosynthesis in E. amylovora is a c-di-GMP-dependent process, through allosteric binding to the cellulose catalytic subunit BcsA. We also report that the endoglucanase BcsZ is a key player in c-di-GMP activation of cellulose biosynthesis. Our results provide evidence of the complex composition of the extracellular matrix produced by E. amylovora and the implications of cellulose biosynthesis in shaping the architecture of the biofilm and in the expression of one of the main virulence phenotypes of this pathogen. © 2016 BSPP AND JOHN WILEY & SONS LTD.


Luisa F Castiblanco, George W Sundin. Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189. Molecular plant pathology. 2016 Oct 18

PMID: 27753193

View Full Text