Correlation Engine 2.0
Clear Search sequence regions


  • fmax (5)
  • Sizes of these terms reflect their relevance to your search.

    In order to conquer the short-channel effects that limit conventional ultra-scale semiconductor devices, two-dimensional materials, as an option of ultimate thin channels, receive wide attention. Graphene, in particular, bears great expectations because of its supreme carrier mobility and saturation velocity. However, its main disadvantage, the lack of bandgap, has not been satisfactorily solved. As a result, maximum oscillation frequency (fmax) which indicates transistors' power amplification ability has been disappointing. Here, we present submicron field-effect transistors with specially designed low-resistance gate and excellent source/drain contact, and therefore significantly improved fmax. The fabrication was assisted by the advanced 8-inch CMOS back-end-of-line technology. A 200-nm-gate-length GFET achieves fT/fmax = 35.4/50 GHz. All GFET samples with gate lengths ranging from 200 nm to 400 nm possess fmax 31-41% higher than fT, closely resembling Si n-channel MOSFETs at comparable technology nodes. These results re-strengthen the promise of graphene field-effect transistors in next generation semiconductor electronics.

    Citation

    Hongming Lyu, Qi Lu, Jinbiao Liu, Xiaoming Wu, Jinyu Zhang, Junfeng Li, Jiebin Niu, Zhiping Yu, Huaqiang Wu, He Qian. Deep-submicron Graphene Field-Effect Transistors with State-of-Art fmax. Scientific reports. 2016 Oct 24;6:35717


    PMID: 27775009

    View Full Text