Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The target autoantigens in several organ-specific autoimmune diseases, including type 1 diabetes (T1D), are intracellular membrane proteins, whose initial encounter with the immune system is poorly understood. Here we propose a new model for how these proteins can initiate autoimmunity. We found that rat and human pancreatic islets release the intracellular β-cell autoantigens in human T1D, GAD65, IA-2, and proinsulin in exosomes, which are taken up by and activate dendritic cells. Accordingly, the anchoring of GAD65 to exosome-mimetic liposomes strongly boosted antigen presentation and T-cell activation in the context of the human T1D susceptibility haplotype HLA-DR4. Cytokine-induced endoplasmic reticulum stress enhanced exosome secretion by β-cells; induced exosomal release of the immunostimulatory chaperones calreticulin, Gp96, and ORP150; and increased exosomal stimulation of antigen-presenting cells. We propose that stress-induced exosomal release of intracellular autoantigens and immunostimulatory chaperones may play a role in the initiation of autoimmune responses in T1D. © 2017 by the American Diabetes Association.

Citation

Chiara Cianciaruso, Edward A Phelps, Miriella Pasquier, Romain Hamelin, Davide Demurtas, Mohamed Alibashe Ahmed, Lorenzo Piemonti, Sachiko Hirosue, Melody A Swartz, Michele De Palma, Jeffrey A Hubbell, Steinunn Baekkeskov. Primary Human and Rat β-Cells Release the Intracellular Autoantigens GAD65, IA-2, and Proinsulin in Exosomes Together With Cytokine-Induced Enhancers of Immunity. Diabetes. 2017 Feb;66(2):460-473

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 27872147

View Full Text