Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Neuroendocrine tumours (NET) overexpress somatostatin receptors (SSTR) that can be targeted for therapy. Somatostatin receptor expression is routinely measured by molecular imaging but the resolution is insufficient to define heterogeneity. We hypothesised that SSTR expression could be measured on circulating tumour cells (CTCs) and used to investigate heterogeneity of expression and track changes during therapy. MCF-7 cells were transfected with SSTR2 or 5 and spiked into donor blood for analysis by CellSearch. Optimum anti-SSTR antibody concentration and exposure time were determined, and flow cytometry was used to evaluate assay sensitivity. For clinical evaluation, blood was analysed by CellSearch, and SSTR2/5 immunohistochemistry was performed on matched tissue samples. Flow cytometry confirmed CellSearch was sensitive and that detection of SSTR was unaffected by the presence of somatostatin analogue up to a concentration of 100 ng ml-l. Thirty-one NET patients were recruited: grade; G1 (29%), G2 (45%), G3 (13%), primary site; midgut (58%), pancreatic (39%). Overall, 87% had SSTR-positive tumours according to somatostatin receptor scintigraphy or 68-Ga-DOTATE PET/CT. Circulating tumour cells were detected in 21 out of 31 patients (68%), of which 33% had evidence of heterogeneous expression of either SSTR2 (n=5) or SSTR5 (n=2). Somatostatin receptors 2 and 5 are detectable on CTCs from NET patients and may be a useful biomarker for evaluating SSTR-targeted therapies and this is being prospectively evaluated in the Phase IV CALMNET trial (NCT02075606).


Alexa Childs, Clare Vesely, Leah Ensell, Helen Lowe, Tu Vinh Luong, Martyn E Caplin, Christos Toumpanakis, Christina Thirlwell, John A Hartley, Tim Meyer. Expression of somatostatin receptors 2 and 5 in circulating tumour cells from patients with neuroendocrine tumours. British journal of cancer. 2016 Dec 06;115(12):1540-1547

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 27875519

View Full Text