Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Chronic cocaine abuse decreases the inhibitory synaptic transmission via unknown mechanisms, while pharmacologically augmenting gamma-aminobutyric acid-ergic (GABAergic) transmission attenuates cocaine craving. Here, we propose that prolonged cocaine withdrawal downregulates GABAergic transmission and its important regulator gephyrin in medial prefrontal cortex (mPFC), in cocaine-conditioned place-preference (CPP) rats. CPP test, patch clamp, and Western blot analysis are engaged to test this proposal. Two-week cocaine withdrawal further increased CPP score, as compared to the 24-hour withdrawn group. The amplitude of GABAergic inhibitory postsynaptic currents (IPSCs) was decreased in 2-week-withdrawn mPFC neurons from cocaine-CPP rats, compared to that of saline-CPP rats. Two-week withdrawal did not alter the amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) in mPFC in cocaine-CPP rats. Two-week withdrawal increased the ratio of EPSCs/IPSCs (E/I) in the same mPFC neuron in cocaine-CPP rats. In addition, Western blots showed 2-week cocaine-withdrawn down-regulated gephyrin at postsynaptic density (PSD) sites of mPFC. We found decreased GABAergic IPSCs and downregulated gephyrin in PSD at mPFC in 2-week cocaine-withdrawn rats that showed increased CPP, suggesting that an increased E/I ratio and neuron excitability in mPFC may associate with a cocaine-seeking tendency. Strategies aimed at GABAergic synapses in mPFC may therapeutically benefit to cocaine addiction treatment. © 2016 S. Karger AG, Basel.

Citation

Wenqiong Yang, Hongsheng He, Yan Pan, Falan Duan, Dan Zhao, Bo Hu, Qingzhen Zhou, Wanhong Liu. Cocaine Withdrawal Reduces Gamma-Aminobutyric Acid-Ergic Transmission and Gephyrin Expression at Medial Prefrontal Cortex in Cocaine-Conditioned Place-Preference Rats, Which Shows Increased Cocaine Seeking. European addiction research. 2017;23(1):28-36

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 27898427

View Full Text