Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

A new in vivo gene mutation assay has been developed based on the phosphatidylinositol glycan anchor biosynthesis, Class A gene (Pig-a in rodents) as an endogenous reporter. Although a large number of chemicals have been evaluated in the rat Pig-a assay in 28-day repeat dose regimens, there was limited reporting of rat Pig-a assay after a single dose. A collaborative study by the Mammalian Mutagenicity Study group, which is a subgroup of the Japanese Environmental Mutagen Society, was conducted to verify the usefulness of the rat Pig-a assay after a single dose as a short-term genotoxicity test. As a part of this collaborative study, the in vivo mutagenicity of a single dose of pyrene (Pyr) was investigated in the red blood cell (RBC Pig-a assay) and in reticulocytes (PIGRET) of rats. Eight-week old male rats were orally dosed with Pyr at 500, 1000, and 2000 mg/kg or ethylnitrosourea (ENU) at 10 and 40 mg/kg as a positive control. The animals in each group were examined for Pig-a mutant frequencies (MF) except for animals in the 2000mg/kg group because of mortality or severe toxicity. The Pig-a MF in RBCs and reticulocytes, as CD59 negative cells, were evaluated once a week for 4 weeks after the dosing. With a single exposure to ENU, the Pig-a MF in both RBCs and reticulocytes increased in a time- and dose-dependent manner. In contrast, no statistically significant effect was observed in rats dosed with Pyr at 500 and 1000 mg/kg. Therefore, Pyr was concluded to be negative in the RBC Pig-a assay and the PIGRET assay after a single oral administration in rats. The result was consistent with previously reported Pig-a assays with repeat dose regimens. Copyright © 2016 Elsevier B.V. All rights reserved.

Citation

Ikuma Yoshida, Akemi Matsumoto, Yumi Sakai, Yumiko Harada, Tsuneo Hashizume. Pyrene did not induce gene mutation in red blood cell Pig-a assay and PIGRET assay in rats. Mutation research. Genetic toxicology and environmental mutagenesis. 2016 Nov 15;811:49-53

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 27931814

View Full Text