Correlation Engine 2.0
Clear Search sequence regions

  • alpha tubulin (4)
  • cellular (3)
  • cytoskeleton (1)
  • gene (1)
  • ion channel (1)
  • mice (4)
  • nociceptors (1)
  • signals (1)
  • touch (5)
  • tubulin (3)
  • Sizes of these terms reflect their relevance to your search.

    At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch.


    Shane J Morley, Yanmei Qi, Loredana Iovino, Laura Andolfi, Da Guo, Nereo Kalebic, Laura Castaldi, Christian Tischer, Carla Portulano, Giulia Bolasco, Kalyanee Shirlekar, Claudia M Fusco, Antonino Asaro, Federica Fermani, Mayya Sundukova, Ulf Matti, Luc Reymond, Adele De Ninno, Luca Businaro, Kai Johnsson, Marco Lazzarino, Jonas Ries, Yannick Schwab, Jing Hu, Paul A Heppenstall. Acetylated tubulin is essential for touch sensation in mice. eLife. 2016 Dec 13;5

    Expand section icon Mesh Tags

    Expand section icon Substances

    PMID: 27976998

    View Full Text