Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Oxidative stress plays an important role in atherosclerosis, a vascular disease with high morbidity and mortality. The ETS domain-containing protein ELK1 is an oxidative stress-sensitive factor modulated by the extracellular signal-regulated kinase (ERK) 1/2 pathway. However, the role of ELK1 in the prevention of atherosclerosis by pravastatin remains unclear. In the present study, male apolipoprotein E-knockout (apoE-/- ) mice fed a diet containing 1.25% cholesterol (w/w) were divided into two groups, one treated with pravastatin (80 mg/kg, 2-2.4 mg/mouse per day) for 8 weeks and the other not. Male C57BL/6J mice fed with a normal diet were used as a control group. Human umbilical vein endothelial cells (HUVEC) were cultured and treated with pravastatin (10 μmol/L) for 18 hours before testing for the presence or absence of 100 μmol/L H2 O2 (24 hours). Examination of pathological sections from mice aortas revealed that pravastatin treatment almost prevented atherosclerotic plaque formation. Pravastatin also inhibited increases in serum and aortic levels of oxidized low-density lipoprotein and aortic malondialdehyde levels and decreases in aortic reduced glutathione, and the activities of superoxide dismutase, catalase and glutathione peroxidase. H2 O2 -induced increases in reactive oxygen species in HUVECs were reversed by pravastatin by 48%. Pravastatin blocked the phosphorylation of ELK1 and ERK1/2 proteins and reduced mRNA levels of early growth response 1, a known atherogenic transcription factor upregulated by the ROS/ERK/ELK1 pathway, in mice. In conclusion, pravastatin attenuates the action of ELK1 induced by oxidative stress to prevent atherosclerosis, which is dependent partly on modulation of ERK1/2 signalling. © 2016 John Wiley & Sons Australia, Ltd.

Citation

Wei Yan, Dan Li, Xiaoxu Zhou. Pravastatin attenuates the action of the ETS domain-containing protein ELK1 to prevent atherosclerosis in apolipoprotein E-knockout mice via modulation of extracellular signal-regulated kinase 1/2 signal pathway. Clinical and experimental pharmacology & physiology. 2017 Mar;44(3):344-352

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 27998006

View Full Text