Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

To investigate the correlation between the imaging features obtained by an automated breast volume scanner (ABVS) and molecular subtypes of breast cancer. We examined 303 malignant breast tumours by ABVS for specific imaging features and by immunohistochemical analysis to determine the molecular subtype. ABVS imaging features, including retraction phenomenon, shape, margins, echogenicity, post-acoustic features, echogenic halo, and calcifications were analysed by univariate and multivariate logistic regression analyses to determine the significant predictive factors of the molecular subtypes. By univariate logistic regression analysis, the predictive factors of the Luminal-A subtype (n=128) were retraction phenomenon (odds ratio [OR]=10.188), post-acoustic shadowing (OR=5.112), and echogenic halo (OR=3.263, P<0.001). The predictive factors of the Human-epidermal-growth-factor-receptor-2-amplified subtype (n=39) were calcifications (OR=6.210), absence of retraction phenomenon (OR=4.375), non-mass lesions (OR=4.286, P<0.001), absence of echogenic halo (OR=3.851, P=0.035), and post-acoustic enhancement (OR=3.641, P=0.008). The predictors for the Triple-Negative subtype (n=47) were absence of retraction phenomenon (OR=5.884), post-acoustic enhancement (OR=5.255, P<0.001), absence of echogenic halo (OR=4.138, P=0.002), and absence of calcifications (OR=3.363, P=0.001). Predictors for the Luminal-B subtype (n=89) had a relatively lower association (OR≤2.328). By multivariate logistic regression analysis, retraction phenomenon was the strongest independent predictor for the Luminal-A subtype (OR=9.063, P<0.001) when present and for the Triple-Negative subtype (OR=4.875, P<0.001) when absent. ABVS imaging features, especially retraction phenomenon, have a strong correlation with the molecular subtypes, expanding the scope of ultrasound in identifying breast cancer subtypes with confidence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.


Feng-Yang Zheng, Qing Lu, Bei-Jian Huang, Han-Sheng Xia, Li-Xia Yan, Xi Wang, Wei Yuan, Wen-Ping Wang. Imaging features of automated breast volume scanner: Correlation with molecular subtypes of breast cancer. European journal of radiology. 2017 Jan;86:267-275

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 28027759

View Full Text