Correlation Engine 2.0
Clear Search sequence regions


We introduce here a new model to describe the binding of extrinsic membrane proteins to acidic lipid membranes. In this view, macroscopic binding affinity is determined by two processes: nonspecific adsorption of protein to the membrane surface and association of acidic lipids with specific sites on the bound protein. We apply this model here to compare the binding of human prothrombin and factor X/Xa to phosphatidylglycerol (PG)- and phosphatidylserine (PS)-containing small unilamellar vesicles measured via relative light scattering. This comparison was undertaken because model membranes containing PS are much more effective in supporting thrombin formation than are membranes containing PG. Analysis of binding isotherms in terms of a traditional membrane binding model gave apparent dissociation constants systematically varying from 0.1 to 10 microM over a range of 8-65 mol% negatively charged phospholipid. With our new description of membrane binding, the dependence of binding data on the acidic lipid surface concentration revealed that only two or three acidic lipid molecules were associated with each surface-bound factor X/Xa or prothrombin molecule. Assuming four independent and equivalent acidic lipid binding sites per protein, it was possible to adjust the values of only the nonspecific adsorption equilibrium constant and the equilibrium constant describing binding of each species of acidic lipid to individual sites on the protein and thereby obtain a good simulation of log-linear binding isotherms for the full range of acidic lipid surface concentrations. The protein-associated binding sites had a greater affinity for PS than for PG; i.e., a lower surface concentration of PS was required to fill the binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)

Citation

G A Cutsforth, R N Whitaker, J Hermans, B R Lentz. A new model to describe extrinsic protein binding to phospholipid membranes of varying composition: application to human coagulation proteins. Biochemistry. 1989 Sep 5;28(18):7453-61

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 2819080

View Full Text