Correlation Engine 2.0
Clear Search sequence regions

  • biosynthesis (4)
  • diterpenoid (1)
  • kolavenol (1)
  • mexico (1)
  • plant proteins (2)
  • salvia (3)
  • salvinorin (6)
  • suggest (1)
  • vitro (1)
  • Sizes of these terms reflect their relevance to your search.

    Salvia divinorum (Lamiaceae) is an annual herb used by indigenous cultures of Mexico for medicinal and ritual purposes. The biosynthesis of salvinorin A, its major bioactive neo-clerodane diterpenoid, remains virtually unknown. This investigation aimed to identify the enzyme that catalyzes the first reaction of salvinorin A biosynthesis, the formation of (-)-kolavenyl diphosphate [(-)-KPP], which is subsequently dephosphorylated to afford (-)-kolavenol. Peltate glandular trichomes were identified as the major and perhaps exclusive site of salvinorin accumulation in S. divinorum. The trichome-specific transcriptome was used to identify candidate diterpene synthases (diTPSs). In vitro and in planta characterization of a class II diTPS designated as SdKPS confirmed its activity as (-)-KPP synthase and its involvement in salvinorin A biosynthesis. Mutation of a phenylalanine into histidine in the active site of SdKPS completely converts the product from (-)-KPP into ent-copalyl diphosphate. Structural elements were identified that mediate the natural formation of the neo-clerodane backbone by this enzyme and suggest how SdKPS and other diTPSs may have evolved from ent-copalyl diphosphate synthase. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.


    Xiaoyue Chen, Anna Berim, Franck E Dayan, David R Gang. A (-)-kolavenyl diphosphate synthase catalyzes the first step of salvinorin A biosynthesis in Salvia divinorum. Journal of experimental botany. 2017 Feb 01;68(5):1109-1122

    Expand section icon Mesh Tags

    Expand section icon Substances

    PMID: 28204567

    View Full Text