Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

We seek to contribute to the improved regulatory use of mass balance models to complement environmental monitoring data by applying the steady-state Quantitative Water Air Sediment Interactive model (QWASI) and a novel unsteady-state QWASI model. A steady-state model can yield not only a useful simulation of chemical fate under near steady-state conditions, but it can provide insights into the likely influences of increasing or decreasing emission rates, temperature changes, and unexpectedly high sensitivities to model parameters that may require additional investigation. We compared the consistency of insights from both types of model, in the expectation that while the dynamic model provides a closer simulation of actual conditions, for many purposes a simple, less computationally demanding, more transparent and less expensive model may be adequate for many regulatory purposes. We investigated the response times of decamethylcyclopentasiloxane (D5) and PCB-180 concentrations in water and sediment under three emission scenarios in three different aquatic systems, namely Lake Ontario, Oslofjord, and Lake Pepin. D5 was predicted to be removed largely by hydrolysis and volatilization in Lake Ontario and Oslofjord whereas it is subject to removal by advective loss in Lake Pepin. The half-times of D5 water concentration to a stepwise reduction in emission were <60 days in all three water bodies. In contrast, the predicted half-times were 0.53, 1.4, and 2.9 years in Lake Pepin, Oslofjord, and Lake Ontario, respectively. We also explored how uncertainties in input parameters propagate into uncertainties of concentrations in water and sediments possibly necessitating more accurate values. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

Citation

Jaeshin Kim, Donald Mackay, David E Powell. Roles of steady-state and dynamic models for regulation of hydrophobic chemicals in aquatic systems: A case study of decamethylcyclopentasiloxane (D5) and PCB-180 in three diverse ecosystems. Chemosphere. 2017 May;175:253-268

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 28226279

View Full Text