Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Microtubule-based axonal transport is tightly regulated by numerous pathways, ensuring appropriate delivery of specific organelle cargoes to selected subcellular domains. Highlighting the importance of this process, pathological evidence has linked alterations in these pathways to the pathogenesis of several neurodegenerative diseases. An important regulator of this system, the microtubule-associated protein Tau, has been shown to participate in signaling cascades, modulate microtubule dynamics, and preferentially inhibit kinesin-1 motility. However, the cellular means of regulating Tau's inhibition of kinesin-1 motility remains unknown. Tau is subject to various posttranslational modifications, including phosphorylation, but whether phosphorylation regulates Tau on the microtubule surface has not been addressed. It has been shown that tyrosine 18 phosphorylated Tau regulates inhibition of axonal transport in the disease state. Tyrosine 18 is both a disease- and nondisease-state modification and is therefore an attractive starting point for understanding control of Tau's inhibition of kinesin-1 motility. We show that pseudophosphorylation of tyrosine 18 reduces 3RS-Tau's inhibition of kinesin-1 motility. In addition, we show that introduction of negative charge at tyrosine 18 shifts Tau's previously described static-dynamic state binding equilibrium toward the dynamic state. We also present the first evidence of Tau's static-dynamic state equilibrium under physiological conditions. © 2017 Stern et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

Citation

Jamie L Stern, Dominique V Lessard, Gregory J Hoeprich, Gerardo A Morfini, Christopher L Berger. Phosphoregulation of Tau modulates inhibition of kinesin-1 motility. Molecular biology of the cell. 2017 Apr 15;28(8):1079-1087

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 28251926

View Full Text