Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Excessive concentrations of vascular endothelial growth factor (VEGF) trigger angiogenesis, which causes complications such as the destabilization of atherosclerotic plaques and increased growth of tumors. This work focuses on the determination of the inhibitory activity of melatonin and other indolic related compounds on VEGF-induced VEGF receptor-2 (VEGFR-2) activation and an approximation to the molecular mechanism underlying the inhibition. Quantification of phosphorylated VEGFR-2 was measured by ELISA. Migration wound-healing assay was used to determine cell migration of human umbilical vein endothelial cells (HUVECs). This is the first time that melatonin, 3-indolacetic acid, 5-hydroxytryptophol, and serotonin are proved to significantly inhibit VEGF-induced VEGFR-2 activation in human umbilical vein endothelial cells and subsequent angiogenesis. 3-Indolacetic acid showed the highest inhibitory effect (IC50 value of 0.9704 mM), followed by 5-hydroxytryptophol (35% of inhibition at 0.1 mM), melatonin (30% of inhibition at 1 mM), and serotonin (24% of inhibition at 1 mM). An approximation to the molecular mechanism of the inhibition has been proposed, suggesting that indolic compounds might interact with the cell surface components of the endothelial membrane in a way that prevents VEGF from activating the receptor. Additionally, wound-healing assay revealed that exposure of HUVECs to melatonin and 3-indolacetic acid in the presence of VEGF significantly inhibited cell migration by 87% and 99%, respectively, after 24 h. These data demonstrate that melatonin, 3-indolacetic acid, 5-hydroxytryptophol, and serotonin would be good molecules for future exploitation as anti-VEGF signaling agents.

Citation

Ana B Cerezo, Ruth Hornedo-Ortega, M Antonia Álvarez-Fernández, Ana M Troncoso, M Carmen García-Parrilla. Inhibition of VEGF-Induced VEGFR-2 Activation and HUVEC Migration by Melatonin and Other Bioactive Indolic Compounds. Nutrients. 2017 Mar 08;9(3)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 28282869

View Full Text