Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The sulfonylurea receptor 1 (SUR1) protein forms the regulatory subunit in ATP sensitive K+ (KATP) channels in the pancreas. SUR proteins are members of the ATP binding cassette (ABC) superfamily of proteins. Binding and hydrolysis of MgATP at the SUR nucleotide binding domains (NBDs) lead to channel opening. Pancreatic KATP channels play an important role in insulin secretion. SUR1 mutations that result in increased levels of channel opening ultimately inhibit insulin secretion and lead to neonatal diabetes. In contrast, SUR1 mutations that disrupt trafficking and/or decrease gating of KATP channels cause congenital hyperinsulinism, where oversecretion of insulin occurs even in the presence of low glucose levels. Here, we present data on the effects of specific congenital hyperinsulinism-causing mutations (G716V, R842G, and K890T) located in different regions of the first nucleotide binding domain (NBD1). Nuclear magnetic resonance (NMR) and fluorescence data indicate that the K890T mutation affects residues throughout NBD1, including residues that bind MgATP, NBD2, and coupling helices. The mutations also decrease the MgATP binding affinity of NBD1. Size exclusion and NMR data indicate that the G716V and R842G mutations cause aggregation of NBD1 in vitro, possibly because of destabilization of the domain. These data describe structural characterization of SUR1 NBD1 and shed light on the underlying molecular basis of mutations that cause congenital hyperinsulinism.

Citation

Claudia P Alvarez, Marijana Stagljar, D Ranjith Muhandiram, Voula Kanelis. Hyperinsulinism-Causing Mutations Cause Multiple Molecular Defects in SUR1 NBD1. Biochemistry. 2017 May 09;56(18):2400-2416

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 28346775

View Full Text