Correlation Engine 2.0
Clear Search sequence regions


  • companion (1)
  • deform (1)
  • gramicidin (5)
  • lipid (6)
  • lipid bilayers (2)
  • local (1)
  • Sizes of these terms reflect their relevance to your search.

    To change conformation, a protein must deform the surrounding bilayer. In this work, a three-dimensional continuum elastic model for gramicidin A in a lipid bilayer is shown to describe the sensitivity to thickness, curvature stress, and the mechanical properties of the lipid bilayer. A method is demonstrated to extract the gramicidin-lipid boundary condition from all-atom simulations that can be used in the three-dimensional continuum model. The boundary condition affects the deformation dramatically, potentially much more than typical variations in the material stiffness do as lipid composition is changed. Moreover, it directly controls the sensitivity to curvature stress. The curvature stress and hydrophobic surfaces of the all-atom and continuum models are found to be in excellent agreement. The continuum model is applied to estimate the enrichment of hydrophobically matched lipids near the channel in a mixture, and the results agree with single-channel experiments and extended molecular dynamics simulations from the companion article by Beaven et al. in this issue of Biophysical Journal. Published by Elsevier Inc.

    Citation

    Alexander J Sodt, Andrew H Beaven, Olaf S Andersen, Wonpil Im, Richard W Pastor. Gramicidin A Channel Formation Induces Local Lipid Redistribution II: A 3D Continuum Elastic Model. Biophysical journal. 2017 Mar 28;112(6):1198-1213

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 28355547

    View Full Text