Correlation Engine 2.0
Clear Search sequence regions


  • 1- proteins human (1)
  • Ca2 (4)
  • calcium (1)
  • cdna library (1)
  • female (1)
  • gene (1)
  • help (1)
  • human (3)
  • hybrid (1)
  • insulin (7)
  • KCNK16 (2)
  • mice knockout (1)
  • OPN (2)
  • osteopontin (13)
  • potassium (2)
  • potassium channel (3)
  • protein human (3)
  • SPP1 protein (1)
  • Sizes of these terms reflect their relevance to your search.

    Glucose-stimulated insulin secretion (GSIS) relies on β-cell Ca2+ influx, which is modulated by the two-pore-domain K+ (K2P) channel, TALK-1. A gain-of-function polymorphism in KCNK16, the gene encoding TALK-1, increases risk for developing type-2 diabetes. While TALK-1 serves an important role in modulating GSIS, the regulatory mechanism(s) that control β-cell TALK-1 channels are unknown. Therefore, we employed a membrane-specific yeast two-hybrid (MYTH) assay to identify TALK-1-interacting proteins in human islets, which will assist in determining signaling modalities that modulate TALK-1 function. Twenty-one proteins from a human islet cDNA library interacted with TALK-1. Some of these interactions increased TALK-1 activity, including intracellular osteopontin (iOPN). Intracellular OPN is highly expressed in β-cells and is upregulated under pre-diabetic conditions to help maintain normal β-cell function; however, the functional role of iOPN in β-cells is poorly understood. We found that iOPN colocalized with TALK-1 in pancreatic sections and coimmunoprecipitated with human islet TALK-1 channels. As human β-cells express two K+ channel-forming variants of TALK-1, regulation of these TALK-1 variants by iOPN was assessed. At physiological voltages iOPN activated TALK-1 transcript variant 3 channels but not TALK-1 transcript variant 2 channels. Activation of TALK-1 channels by iOPN also hyperpolarized resting membrane potential (Vm) in HEK293 cells and in primary mouse β-cells. Intracellular OPN was also knocked down in β-cells to test its effect on β-cell TALK-1 channel activity. Reducing β-cell iOPN significantly decreased TALK-1 K+ currents and increased glucose-stimulated Ca2+ influx. Importantly, iOPN did not affect the function of other K2P channels or alter Ca2+ influx into TALK-1 deficient β-cells. These results reveal the first protein interactions with the TALK-1 channel and found that an interaction with iOPN increased β-cell TALK-1 K+ currents. The TALK-1/iOPN complex caused Vm hyperpolarization and reduced β-cell glucose-stimulated Ca2+ influx, which is predicted to inhibit GSIS.

    Citation

    Matthew T Dickerson, Nicholas C Vierra, Sarah C Milian, Prasanna K Dadi, David A Jacobson. Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells. PloS one. 2017;12(4):e0175069

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 28403169

    View Full Text