Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Sulfoquinovosyl diacylglycerol (SQDG) is present in the membranes of cyanobacteria or their descendants, plastids at species-dependent levels. We investigated the physiological significance of the intrinsic SQDG content in the cyanobacterium Synechococcus elongatus PCC 7942, with the use of its mutant, in which the genes for SQDG synthesis, sqdB and sqdX, were overexpressed. The mutant showed a 1.3-fold higher content of SQDG (23.6 mol% relative to total cellular lipids, cf., 17.1 mol% in the control strain) with much less remarkable effects on the other lipid classes. Simultaneously observed were 1.6- to 1.9-fold enhanced mRNA levels for the genes responsible for the synthesis of the lipids other than SQDG, as if to compensate for the SQDG overproduction. Meanwhile, the mutant showed no injury to cell growth, however, cell length was increased (6.1 ± 2.3, cf., 3.8 ± 0.8 μm in the control strain). Accordingly with this, a wide range of genes responsible for cell division were 1.6-2.4-fold more highly expressed in the mutant. These results suggested that a regulatory mechanism for lipid homeostasis functions in the mutant, and that SQDG has to be kept from surpassing the intrinsic content in S. elongatus for repression of the abnormal expression of cell division-related genes and, inevitably, for normal cell division. Copyright © 2017 Elsevier Inc. All rights reserved.

Citation

Norihiro Sato, Yuki Ebiya, Ryutaro Kobayashi, Yoshitaka Nishiyama, Mikio Tsuzuki. Disturbance of cell-size determination by forced overproduction of sulfoquinovosyl diacylglycerol in the cyanobacterium Synechococcus elongatus PCC 7942. Biochemical and biophysical research communications. 2017 Jun 03;487(3):734-739

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 28450108

View Full Text