Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Prolyl-tRNA synthetase (PRS) is a member of the aminoacyl-tRNA synthetase family of enzymes and catalyzes the synthesis of prolyl-tRNAPro using ATP, l-proline, and tRNAPro as substrates. An ATP-dependent PRS inhibitor, halofuginone, was shown to suppress autoimmune responses, suggesting that the inhibition of PRS is a potential therapeutic approach for inflammatory diseases. Although a few PRS inhibitors have been derivatized from natural sources or substrate mimetics, small-molecule human PRS inhibitors have not been reported. In this study, we discovered a novel series of pyrazinamide PRS inhibitors from a compound library using pre-transfer editing activity of human PRS enzyme. Steady-state biochemical analysis on the inhibitory mode revealed its distinctive characteristics of inhibition with proline uncompetition and ATP competition. The binding activity of a representative compound was time-dependently potentiated by the presence of l-proline with Kd of 0.76 nM. Thermal shift assays demonstrated the stabilization of PRS in complex with l-proline and pyrazinamide PRS inhibitors. The binding mode of the PRS inhibitor to the ATP site of PRS enzyme was elucidated using the ternary complex crystal structure with l-proline. The results demonstrated the different inhibitory and binding mode of pyrazinamide PRS inhibitors from preceding halofuginone. Furthermore, the PRS inhibitor inhibited intracellular protein synthesis via a different mode than halofuginone. In conclusion, we have identified a novel drug-like PRS inhibitor with a distinctive binding mode. This inhibitor was effective in a cellular context. Thus, the series of PRS inhibitors are considered to be applicable to further development with differentiation from preceding halofuginone. Copyright © 2017 Elsevier Inc. All rights reserved.

Citation

Ryutaro Adachi, Kengo Okada, Robert Skene, Kazumasa Ogawa, Masanori Miwa, Kazuhiro Tsuchinaga, Shoichi Ohkubo, Tsutomu Henta, Tomohiro Kawamoto. Discovery of a novel prolyl-tRNA synthetase inhibitor and elucidation of its binding mode to the ATP site in complex with l-proline. Biochemical and biophysical research communications. 2017 Jun 24;488(2):393-399

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 28501621

View Full Text