Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Pathological growth of ocular vasculature networks can underpin visual impairment in neovascular age-related macular degeneration, proliferative diabetic retinopathy and retinopathy of prematurity. Our aim was to uncover novel pharmacological regulators of ocular angiogenesis by phenotype-based screening in zebrafish. A bioactive chemical library of 465 drugs was screened to identify small molecule inhibitors of ocular hyaloid vasculature (HV) angiogenesis in zebrafish larvae. Selectivity was assessed by evaluation of non-ocular intersegmental vasculature development. Safety pharmacology examined visual behaviour and retinal histology in larvae. Molecular mechanisms of action were scrutinized using expression profiling of target mRNAs and miRNAs in larval eyes. Library screening identified 10 compounds which significantly inhibited HV developmental angiogenesis. The validated hit calcitriol selectively demonstrated dose-dependent attenuation of HV development. In agreement, vitamin D receptor (VDR) agonists paricalcitol, doxercalciferol, maxacalcitol, calcipotriol, seocalcitol, calcifediol and tacalcitol significantly and selectively attenuated HV development. VDR agonists induced minor ocular morphology abnormalities and affected normal visual function. Calcitriol induced a three to sevenfold increase in ocular dre-miR-21 expression. Consistently, all-trans-retinoic acid attenuated HV development and increased ocular dre-miR-21 expression. Interestingly, zebrafish ocular vegfaa and vegfab expression was significantly increased while, vegfc, flt1 and kdrl expression was unchanged by calcitriol. These studies identified VDR agonists as significant and selective anti-angiogenics in the developing vertebrate eye and miR21 as a key downstream regulated miRNA. These targets should be further evaluated as molecular hallmarks of, and therapeutic targets for pathological ocular neovascularization. © 2017 The British Pharmacological Society.

Citation

Stephanie L Merrigan, Breandán N Kennedy. Vitamin D receptor agonists regulate ocular developmental angiogenesis and modulate expression of dre-miR-21 and VEGF. British journal of pharmacology. 2017 Aug;174(16):2636-2651

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 28547797

View Full Text