Correlation Engine 2.0
Clear Search sequence regions


  • 24 dehydrocholesterol (1)
  • acid (1)
  • across (1)
  • Adamts5 (6)
  • adult (3)
  • AF 1 (1)
  • af 2 (1)
  • akt protein (1)
  • antigen (1)
  • case (1)
  • catalog (2)
  • Cdkn1a (2)
  • cell death (2)
  • cell growth (5)
  • chromatin (12)
  • data analysis (1)
  • Dhcr24 (7)
  • diamond (1)
  • direct (8)
  • disintegrin (1)
  • dmso (1)
  • dnase (1)
  • EGF (3)
  • EGR1 (5)
  • epithelium (1)
  • Esr1 (4)
  • essential (2)
  • estradiol (1)
  • estrogen (2)
  • exon (1)
  • expressed genes (2)
  • f 12 (1)
  • f factor (1)
  • factors (3)
  • formalin (1)
  • gamma (1)
  • gene (24)
  • genotypes (1)
  • growth factor receptor (1)
  • growth factors (3)
  • homeobox (3)
  • hormones (1)
  • Hoxa9 (2)
  • humans (2)
  • ICI 1 (1)
  • ici 182, 780 (3)
  • igf (1)
  • Igf1 (1)
  • IGF1Rs (14)
  • immunoglobulin (1)
  • impair (1)
  • insulin (1)
  • IRS1 (1)
  • Ki 67 (1)
  • Ki67 (2)
  • knockout mice (1)
  • layers (5)
  • leukemia (1)
  • ligand (1)
  • livestock (2)
  • Map2k6 (4)
  • mice (30)
  • mitogen (3)
  • MMTV (1)
  • Ngfr (7)
  • ngfr protein (1)
  • nitrogen (1)
  • Nr4a1 (2)
  • nuclear factor- 1 (1)
  • nuclear receptor (2)
  • overlap genes (1)
  • paraffin (1)
  • phenotypes (1)
  • Ppargc1a (3)
  • primers transcripts (1)
  • probes rna (2)
  • profiles (2)
  • prostate (1)
  • protocols (2)
  • reagent (1)
  • real- time (11)
  • receptor (1)
  • rna (9)
  • rodent (2)
  • sciences (4)
  • serum (2)
  • signals (11)
  • slides (1)
  • Sox4 (2)
  • steroid (1)
  • stromal cells (6)
  • target genes (1)
  • thrombospondin (1)
  • transcripts b (2)
  • treatments responses (1)
  • trizol (1)
  • Txnip (2)
  • uteri (1)
  • uterus (10)
  • Wnt4 (7)
  • Sizes of these terms reflect their relevance to your search.

    Estrogen (E2) signaling through its nuclear receptor, E2 receptor α (ERα) increases insulinlike growth factor 1 (IGF1) in the rodent uterus, which then initiates further signals via the IGF1 receptor. Directly administering IGF1 results in similar biological and transcriptional uterine responses. Our studies using global ERα-null mice demonstrated a loss of uterine biological responses of the uterus to E2 or IGF1 treatment, while maintaining transcriptional responses to IGF1. To address this discrepancy in the need for uterine ERα in mediating the IGF1 transcriptional vs growth responses, we assessed the IGF1 transcriptional responses in PgrCre+Esr1f/f (called ERαUtcKO) mice, which selectively lack ERα in progesterone receptor (PGR) expressing cells, including all uterine cells, while maintaining ERα expression in other tissues and cells that do not express Pgr. Additionally, we profiled IGF1-induced ERα binding sites in uterine chromatin using chromatin immunoprecipitation sequencing. Herein, we explore the transcriptional and molecular signaling that underlies our findings to refine our understanding of uterine IGF1 signaling and identify ERα-mediated and ERα-independent uterine transcriptional responses. Defining these mechanisms in vivo in whole tissue and animal contexts provides details of nuclear receptor mediated mechanisms that impact biological systems and have potential applicability to reproductive processes of humans, livestock and wildlife.

    Citation

    Sylvia C Hewitt, Wipawee Winuthayanon, Sydney L Lierz, Katherine J Hamilton, Lauren J Donoghue, J Tyler Ramsey, Sara A Grimm, Yukitomo Arao, Kenneth S Korach. Role of ERα in Mediating Female Uterine Transcriptional Responses to IGF1. Endocrinology. 2017 Jun 06;158(8):2427-2435

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 28586424

    View Full Text