Correlation Engine 2.0
Clear Search sequence regions


  • ABCA1 (1)
  • cancers (10)
  • cholesterol (8)
  • cohorts (1)
  • email (1)
  • follow up study (1)
  • gene (1)
  • help (1)
  • humans (1)
  • LDLR (5)
  • male (1)
  • metastases (2)
  • mortality (1)
  • nadph (2)
  • NDUFB7 protein (1)
  • odds ratio (2)
  • patients (1)
  • PCSK9 (1)
  • physician (1)
  • prostate (6)
  • protein human (2)
  • receptors (1)
  • receptors ldl (2)
  • SCARB1 (1)
  • SOAT1 (3)
  • sterol (3)
  • Sizes of these terms reflect their relevance to your search.

    Lethal prostate cancers have higher expression of squalene monooxygenase (SQLE), the second rate-limiting enzyme of cholesterol synthesis. Preclinical studies suggested that aberrant cholesterol regulators, receptors and transporters contribute to cholesterol accumulation uniformly. We assessed their association with features of aggressive cancers. In the prospective prostate cancer cohorts within the Health Professional Follow-up Study, the Physicians' Health Study and the Swedish Watchful Waiting Study, tumor mRNA expression profiling was performed. Lethal disease was defined as mortality or metastases from prostate cancer (n = 266) in contrast to non-lethal disease without metastases after >8 years of follow-up (n = 476). Associations with Gleason grade were additionally assessed using The Cancer Genome Atlas primary prostate cancer dataset (n = 333). Higher Gleason grade was associated with lower LDLR expression, lower SOAT1 and higher SQLE expression. Besides high SQLE expression, cancers that became lethal despite primary treatment were characterized by low LDLR expression (odds ratio for highest versus lowest quintile, 0.37; 95% CI 0.18-0.76) and by low SOAT1 expression (odds ratio, 0.41; 95% CI 0.21-0.83). The association of LDLR expression and lethality was not present in tumors with high IDOL expression. ABCA1, PCSK9 or SCARB1 expressions were not associated with Gleason grade or lethal cancer. In summary, prostate cancers that progress to lethal disease rely on de novo cholesterol synthesis (via SQLE), rather than transcellular uptake (via LDLR) or cholesterol esterification (via SOAT1). These results may help design pharmacotherapy for high-risk patients. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

    Citation

    Konrad H Stopsack, Travis A Gerke, Ove Andrén, Swen-Olof Andersson, Edward L Giovannucci, Lorelei A Mucci, Jennifer R Rider. Cholesterol uptake and regulation in high-grade and lethal prostate cancers. Carcinogenesis. 2017 Aug 01;38(8):806-811

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 28595267

    View Full Text