Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The ability of LuxR-type proteins to regulate transcription is controlled by bacterial pheromones, N-acylhomoserine lactones (AHLs). Most LuxR-family proteins require their cognate AHLs for activity, and some of them require AHLs for folding and stability, and for protease-resistance. However, a few members of this family are able to fold, dimerize, bind DNA, and regulate transcription in the absence of AHLs; moreover, these proteins are antagonized by their cognate AHLs. One such protein is YenR of Yersinia enterocolitica, which is antagonized by N-3-oxohexanoyl-l-homoserine lactone (OHHL). This pheromone is produced by the OHHL synthase, a product of the adjacent yenI gene. Another example is CepR2 of Burkholderia cenocepacia, which is antagonized by N-octanoyl-l-homoserine lactone (OHL), whose synthesis is directed by the cepI gene of the same bacterium. Here, we describe the high-resolution crystal structures of the AHL binding domains of YenR and CepR2. YenR was crystallized in the presence and absence of OHHL. While this ligand does not cause large scale changes in the YenR structure, it does alter the orientation of several highly conserved YenR residues within and near the pheromone-binding pocket, which in turn caused a significant movement of a surface-exposed loop. © 2017 Wiley Periodicals, Inc.

Citation

Youngchang Kim, Gekleng Chhor, Ching-Sung Tsai, Gabriel Fox, Chia-Sui Chen, Nathan J Winans, Robert Jedrzejczak, Andrzej Joachimiak, Stephen C Winans. X-ray crystal structures of the pheromone-binding domains of two quorum-hindered transcription factors, YenR of Yersinia enterocolitica and CepR2 of Burkholderia cenocepacia. Proteins. 2017 Oct;85(10):1831-1844

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 28614901

View Full Text