Correlation Engine 2.0
Clear Search sequence regions


  • cases (1)
  • MgB2 (3)
  • nbti (3)
  • patient (1)
  • Sizes of these terms reflect their relevance to your search.

    Magnetic Resonance Imaging (MRI), a powerful medical diagnostic tool, is the largest commercial application of superconductivity. The superconducting magnet is the largest and most expensive component of an MRI system. The magnet configuration is determined by competing requirements including optimized functional performance, patient comfort, ease of siting in a hospital environment, minimum acquisition and lifecycle cost including service. In this paper, we analyze conductor requirements for commercial MRI magnets beyond traditional NbTi conductors, while avoiding links to a particular magnet configuration or design decisions. Potential conductor candidates include MgB2, ReBCO and BSCCO options. The analysis shows that no MRI-ready non-NbTi conductor is commercially available at the moment. For some conductors, MRI specifications will be difficult to achieve in principle. For others, cost is a key barrier. In some cases, the prospects for developing an MRI-ready conductor are more favorable, but significant developments are still needed. The key needs include the development of, or significant improvements in: (a) conductors specifically designed for MRI applications, with form-fit-and-function readily integratable into the present MRI magnet technology with minimum modifications. Preferably, similar conductors should be available from multiple vendors; (b) conductors with improved quench characteristics, i.e. the ability to carry significant current without damage while in the resistive state; (c) insulation which is compatible with manufacturing and refrigeration technologies; (d) dramatic increases in production and long-length quality control, including large-volume conductor manufacturing technology. In-situ MgB2 is, perhaps, the closest to meeting commercial and technical requirements to become suitable for commercial MRI. Conductor technology is an important, but not the only, issue in introduction of HTS / MgB2 conductor into commercial MRI magnets. These new conductors, even when they meet the above requirements, will likely require numerous modifications and developments in the associated magnet technology.

    Citation

    Michael Parizh, Yuri Lvovsky, Michael Sumption. Conductors for commercial MRI magnets beyond NbTi: requirements and challenges. Superconductor science & technology. 2017 Jan;30(1):014007


    PMID: 28626340

    View Full Text