Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Middle East respiratory syndrome coronavirus (MERS-CoV) remains a threat to public health worldwide; however, effective vaccine or drug against CoVs remains unavailable. CoV helicase is one of the three evolutionary most conserved proteins in nidoviruses, thus making it an important target for drug development. We report here the first structure of full-length coronavirus helicase, MERS-CoV nsp13. MERS-CoV helicase has multiple domains, including an N-terminal Cys/His rich domain (CH) with three zinc atoms, a beta-barrel domain and a C-terminal SF1 helicase core with two RecA-like subdomains. Our structural analyses show that while the domain organization of nsp13 is conserved throughout nidoviruses, the individual domains of nsp13 are closely related to the equivalent eukaryotic domains of Upf1 helicases. The most distinctive feature differentiating CoV helicases from eukaryotic Upf1 helicases is the interaction between CH domain and helicase core.

Citation

Wei Hao, Justyna Aleksandra Wojdyla, Rong Zhao, Ruiyun Han, Rajat Das, Ivan Zlatev, Muthiah Manoharan, Meitian Wang, Sheng Cui. Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLoS pathogens. 2017 Jun;13(6):e1006474

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 28651017

View Full Text