Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Persistent high-risk genus human Alphapapillomavirus (HPV) infections cause nearly every cervical carcinoma and a subset of tumors in the oropharyngeal tract. During the decades required for HPV-associated tumorigenesis, the cellular genome becomes significantly destabilized. Our analysis of cervical tumors from four separate data sets found a significant upregulation of the homologous-recombination (HR) pathway genes. The increased abundance of HR proteins can be replicated in primary cells by expression of the two HPV oncogenes (E6 and E7) required for HPV-associated transformation. HPV E6 and E7 also enhanced the ability of HR proteins to form repair foci, and yet both E6 and E7 reduce the ability of the HR pathway to complete double-strand break (DSB) repair by about 50%. The HPV oncogenes hinder HR by allowing the process to begin at points in the cell cycle when the lack of a sister chromatid to serve as a homologous template prevents completion of the repair. Further, HPV E6 attenuates repair by causing RAD51 to be mislocalized away from both transient and persistent DSBs, whereas HPV E7 is only capable of impairing RAD51 localization to transient lesions. Finally, we show that the inability to robustly repair DSBs causes some of these lesions to be more persistent, a phenotype that correlates with increased integration of episomal DNA. Together, these data support our hypothesis that HPV oncogenes contribute to the genomic instability observed in HPV-associated malignancies by attenuating the repair of damaged DNA.IMPORTANCE This study expands the understanding of HPV biology, establishing a direct role for both HPV E6 and E7 in the destabilization of the host genome by blocking the homologous repair of DSBs. To our knowledge, this is the first time that both viral oncogenes were shown to disrupt this DSB repair pathway. We show that HPV E6 and E7 allow HR to initiate at an inappropriate part of the cell cycle. The mislocalization of RAD51 away from DSBs in cells expressing HPV E6 and E7 hinders HR through a distinct mechanism. These observations have broad implications. The impairment of HR by HPV oncogenes may be targeted for treatment of HPV+ malignancies. Further, this attenuation of repair suggests HPV oncogenes may contribute to tumorigenesis by promoting the integration of the HPV genome, a common feature of HPV-transformed cells. Our data support this idea since HPV E6 stimulates the integration of episomes. Copyright © 2017 American Society for Microbiology.

Citation

Nicholas A Wallace, Sujita Khanal, Kristin L Robinson, Sebastian O Wendel, Joshua J Messer, Denise A Galloway. High-Risk Alphapapillomavirus Oncogenes Impair the Homologous Recombination Pathway. Journal of virology. 2017 Oct 15;91(20)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 28768872

View Full Text