Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

TBC1 domain family member 1 (TBC1D1), a Rab GTPase-activating protein and paralogue of Akt substrate of 160 kDa (AS160), has been implicated in both insulin- and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase-mediated glucose transporter type 4 (GLUT4) translocation. However, the role of TBC1D1 in contracting muscle remains ambiguous. We therefore explored the metabolic consequence of ablating TBC1D1 in both resting and contracting skeletal muscles, utilizing a rat TBC1D1 KO model. Although insulin administration rapidly increased (p < 0.05) plasma membrane GLUT4 content in both red and white gastrocnemius muscles, the TBC1D1 ablation did not alter this response nor did it affect whole-body insulin tolerance, suggesting that TBC1D1 is not required for insulin-induced GLUT4 trafficking events. Consistent with findings in other models of altered TBC1D1 protein levels, whole-animal and ex vivo skeletal muscle fat oxidation was increased in the TBC1D1 KO rats. Although there was no change in mitochondrial content in the KO rats, maximal ADP-stimulated respiration was higher in permeabilized muscle fibers, which may contribute to the increased reliance on fatty acids in resting KO animals. Despite this increase in mitochondrial oxidative capacity, run time to exhaustion at various intensities was impaired in the KO rats. Moreover, contraction-induced increases in sarcolemmal GLUT4 content and glucose uptake were lower in the white gastrocnemius of the KO animals. Altogether, our results highlight a critical role for TBC1D1 in exercise tolerance and contraction-mediated translocation of GLUT4 to the plasma membrane in skeletal muscle. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

Citation

Jamie Whitfield, Sabina Paglialunga, Brennan K Smith, Paula M Miotto, Genevieve Simnett, Holly L Robson, Swati S Jain, Eric A F Herbst, Eric M Desjardins, David J Dyck, Lawrence L Spriet, Gregory R Steinberg, Graham P Holloway. Ablating the protein TBC1D1 impairs contraction-induced sarcolemmal glucose transporter 4 redistribution but not insulin-mediated responses in rats. The Journal of biological chemistry. 2017 Oct 06;292(40):16653-16664

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 28808062

View Full Text