Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The Golgi complex consists of serially stacked membrane cisternae which can be further categorized into sub-Golgi regions, including the cis-Golgi, medial-Golgi, trans-Golgi and trans-Golgi network. Cellular functions of the Golgi are determined by the characteristic distribution of its resident proteins. The spatial resolution of conventional light microscopy is too low to resolve sub-Golgi structure or cisternae. Thus, the immuno-gold electron microscopy is a method of choice to localize a protein at the sub-Golgi level. However, the technique and instrument are beyond the capability of most cell biology labs. We describe here our recently developed super-resolution method called Golgi protein localization by imaging centers of mass (GLIM) to systematically and quantitatively localize a Golgi protein. GLIM is based on standard fluorescence labeling protocols and conventional wide-field or confocal microscopes. It involves the calibration of chromatic-shift aberration of the microscopic system, the image acquisition and the post-acquisition analysis. The sub-Golgi localization of a test protein is quantitatively expressed as the localization quotient. There are four main advantages of GLIM; it is rapid, based on conventional methods and tools, the localization result is quantitative, and it affords ~ 30 nm practical resolution along the Golgi axis. Here we describe the detailed protocol of GLIM to localize a test Golgi protein.

Citation

Hieng Chiong Tie, Bing Chen, Xiuping Sun, Li Cheng, Lei Lu. Quantitative Localization of a Golgi Protein by Imaging Its Center of Fluorescence Mass. Journal of visualized experiments : JoVE. 2017 Aug 10(126)


PMID: 28829416

View Full Text