Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Recent evidence suggests that adventitial fibroblasts (AFs) are crucially implicated in atherosclerosis. However, the mechanisms by which AFs are dysfunctional and contribute to atherosclerosis remain unclear. This study aimed to investigate the role of regulator of G-protein signalling 3 (RGS3) in the regulation of AFs using apoE knockout mouse as the model. Pathological changes in aortic arteries of apoE knockout mice fed with hyperlipid diet were examined by Movat staining. The expression of RGS3, α-SMA, TGF-β1, Smad2, and Smad3 in the adventitia was detected by immunohistochemistry. Adventitial fibroblasts were isolated from aortic arteries of apoE knockout mice and infected with RGS3 overexpression lentivirus or empty lentivirus. The expression of RGS3, α-SMA, TGF-β1, Smad2, and Smad3 in AFs was detected by real-time polymerase chain reaction and Western blot analysis. We found that hyperlipidic diet caused significant aortic intima thickening and atherosclerotic plaques in 15-week-old apoE knockout mice. Compared to wild-type mice, RGS3 expression was lower while α-SMA, TGF-β1, Smad2, and Smad3 expression was higher in the adventitia of apoE knockout mice. In addition, lentivirus mediated overexpression of RGS3 caused decreased expression of α-SMA, TGF-β1, Smad2, and Smad3 in AFs derived from apoE(-/-) mice. In conclusion, these results suggest that RGS3 may provide protection against pathological changes of AFs and the development of atherosclerosis by inhibiting TGF-β1/Smad signalling. RGS3 may be a potential therapeutic target for atherosclerosis. Copyright © 2017 John Wiley & Sons, Ltd.

Citation

Fang Xu, Ying Liu, Lei Shi, Hongjing Cai, Wei Liu, Yejia Hu, Yuling Li, Wendan Yuan. RGS3 inhibits TGF-β1/Smad signalling in adventitial fibroblasts. Cell biochemistry and function. 2017 Aug;35(6):334-338

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 28845525

View Full Text