Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The complete genome of a Trichoplusia ni granulovirus (TnGV) is described and analyzed. The genome contains 175,360 bp (KU752557), becoming the third largest genome within the genus Betabaculovirus, smaller only than the Xestia c-nigrum GV (XecnGV) (178,733 pb) and the Pseudaletia unipuncta GV (PsunGV) (176,677 pb) genomes. The TnGV genome has a 39.81% C+G content and a total of 180 ORFs were identified, 96 of them in the granulin gene direction and 84 in the opposite direction. A total of 94.38% of the ORFs showed high identity with those of ClanGV, HaGV, and SlGV. Eight homologous regions (hrs) were identified as well as one apoptosis inhibitor (IAP-3). Interestingly, three viral enhancing factors (VEFs) were located in TnGV genome: VEF-1 (orf153), VEF-3 (orf155), and VEF-4 (orf164), additional to another metalloprotease (orf37). Two ORFs were unique to TnGV (orf100 and orf101) and another one was shared by only TnGV and AgseGV (orf2). Eleven of the deduced proteins showed high identity with proteins from nucleopolyhedroviruses, three with proteins from ascoviruses, and one with an entomopoxvirus protein. The largest deduced protein contains 1,213 amino acids (orf43) and the smallest deduced protein contains only 50 amino acids (orf143). Sequence identity and phylogenetic analyses showed that the closest related genomes to TnGV are, to date, those of PsunGV and XecnGV. This genome analysis may contribute to functional research on TnGV, and may form the bases for the utilization of this betabaculovirus as a pest control agent.


Ma de Los Ángeles Bivian-Hernández, Juventino López-Tlacomulco, Everardo Mares-Mares, Jorge E Ibarra, María Cristina Del Rincón-Castro. Genomic analysis of a Trichoplusia ni Betabaculovirus (TnGV) with three different viral enhancing factors and two unique genes. Archives of virology. 2017 Dec;162(12):3705-3715

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 28856619

View Full Text