Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Caspases are cysteinyl peptidases involved in inflammation and apoptosis during which hundreds of proteins are cleaved by executioner caspase-3 and -7. Despite the fact that caspase-3 has a higher catalytic activity, caspase-7 is more proficient at cleaving poly(ADP ribose) polymerase 1 (PARP1) because it uses an exosite within its N-terminal domain (NTD). Here, we demonstrate that molecular determinants also located in the NTD enhance the recognition and proteolysis of the Hsp90 co-chaperone p23. Structure-activity relationship analyses using mutagenesis of the caspase-7 NTD and kinetics show that residues 36-45 of caspase-7, which overlap with residues necessary for efficacious PARP1 cleavage, participate in p23 recognition. We also demonstrate using chimeric and truncated proteins that the caspase-7 NTD binds close to the cleavage site in the C-terminal tail of p23. Moreover, because p23 is cleaved at a site bearing a P4 Pro residue (PEVD142↓G), which is far from the optimal sequence, we tested all residues at that position and found notable differences in the preference of caspase-7 and magnitude of differences between residues compared to the results of studies that have used small peptidic substrate libraries. Finally, bioinformatics shows that the regions we identified in caspase-7 and p23 are intrinsically disordered regions that contain molecular recognition features that permit a transient interaction between these two proteins. In summary, we characterized the binding mode for a caspase that is tailored to the specific recognition and cleavage of a substrate, highlighting the importance of studying the peptidase-substrate pair to understand the modalities of substrate recognition by caspases.

Citation

Cyrielle Martini, Mikaël Bédard, Pierre Lavigne, Jean-Bernard Denault. Characterization of Hsp90 Co-Chaperone p23 Cleavage by Caspase-7 Uncovers a Peptidase-Substrate Interaction Involving Intrinsically Disordered Regions. Biochemistry. 2017 Sep 26;56(38):5099-5111

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 28863261

View Full Text