Correlation Engine 2.0
Clear Search sequence regions


  • dna (1)
  • proteins domains (5)
  • region (1)
  • Sizes of these terms reflect their relevance to your search.

    Residues at different positions of a multiple sequence alignment sometimes evolve together, due to a correlated structural or functional stress at these positions. Co-evolution has thus been evidenced computationally in multiple proteins or protein domains. Here, we wish to study whether an evolutionary stress is exerted on a sequence alignment across protein domains, i.e., on longer sequence separations than within a single protein domain. JmjC-containing lysine demethylases were chosen for analysis, as a follow-up to previous studies; these proteins are important multidomain epigenetic regulators. In these proteins, the JmjC domain is responsible for the demethylase activity, and surrounding domains interact with histones, DNA or partner proteins. This family of enzymes was analyzed at the sequence level, in order to determine whether the sequence of JmjC-domains was affected by the presence of a neighboring JmjN domain or PHD finger in the protein. Multiple positions within JmjC sequences were shown to have their residue distributions significantly altered by the presence of the second domain. Structural considerations confirmed the relevance of the analysis for JmjN-JmjC proteins, while among PHD-JmjC proteins, the length of the linker region could be correlated to the residues observed at the most affected positions. The correlation of domain architecture with residue types at certain positions, as well as that of overall architecture with protein function, is discussed. The present results thus evidence the existence of an across-domain evolutionary stress in JmjC-containing demethylases, and provide further insights into the overall domain architecture of JmjC domain-containing proteins. © 2017 Wiley Periodicals, Inc.

    Citation

    Patrick Slama. Two-domain analysis of JmjN-JmjC and PHD-JmjC lysine demethylases: Detecting an inter-domain evolutionary stress. Proteins. 2017 Oct 04


    PMID: 28975662

    View Full Text