Correlation Engine 2.0
Clear Search sequence regions


  • brain tumor (1)
  • cases (1)
  • cell (6)
  • cell compartment (1)
  • cerebellum (1)
  • dna damage (1)
  • germ line (1)
  • medulloblastoma (4)
  • Nanog (4)
  • poor prognosis (1)
  • Ptch1 (5)
  • receptor (1)
  • Sal4 (1)
  • SHH (5)
  • Sizes of these terms reflect their relevance to your search.

    Medulloblastoma (MB) is the most common pediatric brain tumor, comprising four distinct molecular variants, one of which characterized by activation of the Sonic Hedgehog (SHH) pathway, driving 25-30% of sporadic MB. SHH-dependent MBs arise from granule cell precursors (GCPs), are fatal in 40-70% of cases and radioresistance strongly contributes to poor prognosis and tumor recurrence. Patched1 heterozygous (Ptch1 +/-) mice, carrying a germ-line heterozygous inactivating mutation in the Ptch1 gene, the Shh receptor and negative regulator of the pathway, are uniquely susceptible to MB development after radiation damage in neonatal cerebellum. Here, we irradiated ex-vivo GCPs isolated from cerebella of neonatal WT and Ptch1 +/- mice. Our results highlight a less differentiated status of Ptch1-mutated cells after irradiation, influencing DNA damage response. Increased expression levels of pluripotency genes Nanog, Oct4 and Sal4, together with greater clonogenic potential, clearly suggest that radiation induces expansion of the stem-like cell compartment through cell-reprogramming and self-renewal maintenance, and that this mechanism is strongly dependent on Nanog. These results contribute to clarify the molecular mechanisms that control radiation-induced Shh-mediated tumorigenesis and may suggest Nanog as a potential target to inhibit for adjuvant radiotherapy in treatment of SHH-dependent MB.

    Citation

    Barbara Tanno, Simona Leonardi, Gabriele Babini, Paola Giardullo, Ilaria De Stefano, Emanuela Pasquali, Anna Saran, Mariateresa Mancuso. Nanog-driven cell-reprogramming and self-renewal maintenance in Ptch1 +/- granule cell precursors after radiation injury. Scientific reports. 2017 Oct 27;7(1):14238


    PMID: 29079783

    View Full Text