Correlation Engine 2.0
Clear Search sequence regions

  • autism (1)
  • brain (3)
  • CUL3 (1)
  • Kctd13 (10)
  • mice (2)
  • neurogenesis (2)
  • phenotypes (1)
  • ras gene (1)
  • region (1)
  • RhoA (5)
  • ubiquitin (1)
  • zebrafish (1)
  • Sizes of these terms reflect their relevance to your search.

    Copy-number variants of chromosome 16 region 16p11.2 are linked to neuropsychiatric disorders and are among the most prevalent in autism spectrum disorders. Of many 16p11.2 genes, Kctd13 has been implicated as a major driver of neurodevelopmental phenotypes. The function of KCTD13 in the mammalian brain, however, remains unknown. Here we delete the Kctd13 gene in mice and demonstrate reduced synaptic transmission. Reduced synaptic transmission correlates with increased levels of Ras homolog gene family, member A (RhoA), a KCTD13/CUL3 ubiquitin ligase substrate, and is reversed by RhoA inhibition, suggesting increased RhoA as an important mechanism. In contrast to a previous knockdown study, deletion of Kctd13 or kctd13 does not increase brain size or neurogenesis in mice or zebrafish, respectively. These findings implicate Kctd13 in the regulation of neuronal function relevant to neuropsychiatric disorders and clarify the role of Kctd13 in neurogenesis and brain size. Our data also reveal a potential role for RhoA as a therapeutic target in disorders associated with KCTD13 deletion.


    Christine Ochoa Escamilla, Irina Filonova, Angela K Walker, Zhong X Xuan, Roopashri Holehonnur, Felipe Espinosa, Shunan Liu, Summer B Thyme, Isabel A López-García, Dorian B Mendoza, Noriyoshi Usui, Jacob Ellegood, Amelia J Eisch, Genevieve Konopka, Jason P Lerch, Alexander F Schier, Haley E Speed, Craig M Powell. Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature. 2017 Nov 09;551(7679):227-231

    PMID: 29088697

    View Full Text