Correlation Engine 2.0
Clear Search sequence regions


  • cells (1)
  • cellular processes (2)
  • e coli (1)
  • growth (2)
  • Sizes of these terms reflect their relevance to your search.

    Inferring the directionality of interactions between cellular processes is a major challenge in systems biology. Time-lagged correlations allow to discriminate between alternative models, but they still rely on assumed underlying interactions. Here, we use the transfer entropy (TE), an information-theoretic quantity that quantifies the directional influence between fluctuating variables in a model-free way. We present a theoretical approach to compute the transfer entropy, even when the noise has an extrinsic component or in the presence of feedback. We re-analyze the experimental data from Kiviet et al. (2014) where fluctuations in gene expression of metabolic enzymes and growth rate have been measured in single cells of E. coli. We confirm the formerly detected modes between growth and gene expression, while prescribing more stringent conditions on the structure of noise sources. We furthermore point out practical requirements in terms of length of time series and sampling time which must be satisfied in order to infer optimally transfer entropy from times series of fluctuations.

    Citation

    Sourabh Lahiri, Philippe Nghe, Sander J Tans, Martin Luc Rosinberg, David Lacoste. Information-theoretic analysis of the directional influence between cellular processes. PloS one. 2017;12(11):e0187431


    PMID: 29121044

    View Full Text