Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Although it is widely appreciated that the use of global translation inhibitors, such as cycloheximide, in protein degradation assays may result in artefacts, these inhibitors continue to be employed, owing to the absence of robust alternatives. We describe here the promoter reference technique (PRT), an assay for protein degradation with two advantageous features: a reference protein and a gene-specific inhibition of translation. In PRT assays, one measures, during a chase, the ratio of a test protein to a long-lived reference protein, a dihydrofolate reductase (DHFR). The test protein and DHFR are coexpressed, in the yeast Saccharomyces cerevisiae, on a low-copy plasmid from two identical P TDH3 promoters containing additional, previously developed DNA elements. Once transcribed, these elements form 5'-RNA aptamers that bind to the added tetracycline, which represses translation of aptamer-containing mRNAs. The selectivity of repression avoids a global inhibition of translation. This selectivity is particularly important if a component of a relevant proteolytic pathway (e.g. a specific ubiquitin ligase) is itself short-lived. We applied PRT to the Pro/N-end rule pathway, whose substrates include the short-lived Mdh2 malate dehydrogenase. Mdh2 is targeted for degradation by the Gid4 subunit of the GID ubiquitin ligase. Gid4 is also a metabolically unstable protein. Through analyses of short-lived Mdh2 as a target of short-lived Gid4, we illustrate the advantages of PRT over degradation assays that lack a reference and/or involve cycloheximide. In sum, PRT avoids the use of global translation inhibitors during a chase and also provides a "built-in" reference protein. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

Citation

Jang-Hyun Oh, Shun-Jia Chen, Alexander Varshavsky. A reference-based protein degradation assay without global translation inhibitors. The Journal of biological chemistry. 2017 Dec 29;292(52):21457-21465

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 29122887

View Full Text