Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Given that our knowledge of DNA repair is limited because of the complexity of the DNA system, a technique called UVA micro-irradiation has been developed that can be used to visualize the recruitment of DNA repair proteins at double-strand break (DSB) sites. Interestingly, Hoechst 33258 was used under micro-irradiation to sensitize 5-bromouracil (BrU)-labelled DNA, causing efficient DSBs. However, the molecular basis of DSB formation under UVA micro-irradiation remains unknown. Herein, we investigated the mechanism of DSB formation under UVA micro-irradiation conditions. Our results suggest that the generation of a uracil-5-yl radical through electron transfer from Hoechst 33258 to BrU caused DNA cleavage preferentially at self-complementary 5'-AABrUBrU-3' sequences to induce DSB. We also investigated the DNA cleavage in the context of the nucleosome to gain a better understanding of UVA micro-irradiation in a cell-like model. We found that DNA cleavage occurred in both core and linker DNA regions although its efficiency reduced in core DNA. Copyright © 2017 Elsevier Ltd. All rights reserved.

Citation

Abhijit Saha, Seiichiro Kizaki, Ji Hoon Han, Zutao Yu, Hiroshi Sugiyama. UVA irradiation of BrU-substituted DNA in the presence of Hoechst 33258. Bioorganic & medicinal chemistry. 2017 Nov 06


PMID: 29170027

View Full Text