Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The enzyme responsible for the enantioselective production of (S)-1,1,1-trifluoro-2-propanol ((S)-TFP) from 1,1,1-trifluoroacetone (TFA) has been identified in Ogataea polymorpha NBRC 0799. We purified two carbonyl reductases, OpCRD-A and OpCRD-B from this strain, and revealed their characteristics. Both enzymes were specific to NADH, but the following characteristics were different: The molecular mass of subunit OpCRD-A was 40 kDa and that of OpCRD-B was 43 kDa. Amino acid sequences of both enzymes were only 21% identical. OpCRD-B contained 4 mol of zinc per mole of enzyme, but OpCRD-A did not. The optimal pH, temperature, pH stability, thermostability, and inhibitor specificity were also remarkably different. With regard to substrate specificity, both enzymes exhibited high reductase activity toward a wide variety of ketones, aldehydes and fluoroketones, and dehydrogenase activity toward 2-propanol and 2-butanol. The reductase activity was much higher than the dehydrogenase activity at acidic pH. OpCRD-A enantioselectively produced (S)-TFP from TFA, but OpCRD-B preferentially produced (R)-TFP. Thus, we concluded that OpCRD-A plays the main role in the production of (S)-TFP by a reaction of O. polymorpha NBRC 0799 cells and that OpCRD-A has great potential for efficient production of (S)-TFP, as it is an S-specific enzyme and does not catalyze the dehydrogenation of (S)-TFP.

Citation

Kimiyasu Isobe, Shinsuke Miki, Ryoko Ueda, Sayaka Shichida, Daisuke Matsui, Yuko Oku, Yasuhisa Asano. Characterization of two carbonyl reductases from Ogataea polymorpha NBRC 0799. Applied microbiology and biotechnology. 2018 Feb;102(3):1307-1316

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 29238872

View Full Text