Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Circadian rhythms regulate cell proliferation and differentiation; however, little is known about their roles in myogenic differentiation. Our synchronized differentiation studies demonstrate that myoblast proliferation and subsequent myotube formation by cell fusion occur in circadian manners. We found that one of the core regulators of circadian rhythms, Cry2, but not Cry1, is critical for the circadian patterns of these two critical steps in myogenic differentiation. This is achieved through the specific interaction between Cry2 and Bclaf1, which stabilizes mRNAs encoding cyclin D1, a G1/S phase transition regulator, and Tmem176b, a transmembrane regulator for myogenic cell fusion. Myoblasts lacking Cry2 display premature cell cycle exit and form short myotubes because of inefficient cell fusion. Consistently, muscle regeneration is impaired in Cry2-/- mice. Bclaf1 knockdown recapitulated the phenotypes of Cry2 knockdown: early cell cycle exit and inefficient cell fusion. This study uncovers a post-transcriptional regulation of myogenic differentiation by circadian rhythms. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

Citation

Matthew Lowe, Jacob Lage, Ellen Paatela, Dane Munson, Reilly Hostager, Ce Yuan, Nobuko Katoku-Kikyo, Mercedes Ruiz-Estevez, Yoko Asakura, James Staats, Mulan Qahar, Michaela Lohman, Atsushi Asakura, Nobuaki Kikyo. Cry2 Is Critical for Circadian Regulation of Myogenic Differentiation by Bclaf1-Mediated mRNA Stabilization of Cyclin D1 and Tmem176b. Cell reports. 2018 Feb 20;22(8):2118-2132

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 29466738

View Full Text